If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-10x-37=0
a = 9; b = -10; c = -37;
Δ = b2-4ac
Δ = -102-4·9·(-37)
Δ = 1432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1432}=\sqrt{4*358}=\sqrt{4}*\sqrt{358}=2\sqrt{358}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{358}}{2*9}=\frac{10-2\sqrt{358}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{358}}{2*9}=\frac{10+2\sqrt{358}}{18} $
| -18+21x=7(3x-4)+10 | | 5(x*3)=60/2 | | 180=17+x+3x. | | 2x-8x=1=9-10x | | 3(6+2x)=-17+x | | 5×w=10 | | R=v/11 | | 3(5x+1)+2(-4)=0 | | 3.n=63 | | -73=10(7-5u)+50u | | 2/3x=16/4 | | 1.5=0.75/x | | 144=18x-x^2 | | 18x-8=90 | | E.n=20 | | C=205/2m+1189 | | 6x+4+18x-8=180 | | 12(m+5)-42=3(4m+6) | | 4p^2-18=21p | | A=16/x | | A=16/c | | 9x^2–19x+10=0 | | -13+-30p=0 | | 31+9n=49 | | 35=-7(4v-5)+28v | | 49b+33(b-55)=-75+22b | | F(x)=2x3-5x2+4x-5 | | 8-x-3=-4 | | -2=16/x | | 9n^2-31+12=0 | | (2x+10)•=72• | | 36+62x=189 |